CSAPP Lab (02)-Bomb Lab
本文记录了CSAPP配套实验——Bomb Lab的详情WriteUp
-
运行环境:
- Ubuntu 20.04
任务
拆除"bomb":通过反汇编,拆除bomb,以达到拆弹的目的。
知识储备
- GDB调试器的使用
对于C/C++程序的调试,需要在编译前加上-g
。
$g++ -g test.cpp -o test
接下来开启gdb
调试器调试程序:
$gdb test
启用gdb
进入交互模式后,可以用如下命令调试程序
- 运行
Instruction | Function |
---|---|
r(un) | 运行程序,当遇到断点后,程序会在断点处停止运行,等待用户输入下一步的命令 |
c(ontinue) | 继续执行,到下一个断点处(或运行结束) |
n(ext) | 单步跟踪程序,当遇到函数调用时,也不进入此函数体 |
s(tep) | 单步调试如果有函数调用,则进入函数 |
until( lineNumber) | 运行程序直到退出循环体,加行号可以直接运行到某行 |
finish | 运行至当前函数完成返回,并打印函数返回时的堆栈地址和返回值及参数值等信息。 |
call function(params) | 调用程序中可用函数,并传递参数,如对于 int sum(int a, int b),可使用call sum(1, 2) |
q(uit) | 退出gdb调试器 |
b(reak ) | 设置断点 |
info r | 查看寄存器 |
p | 输出变量 |
x | 查看内容 |
set args | 设置函数运行参数 |
- 设置断点
WriteUp
题目一共给了6个bombs,打开bomb.c
查看部分源码,其实关键在于这几段
程序读取input
字符串,如果输入正确的
字符串,那么就拆解成功一个炸弹,否则你就会像下图一样被blown up
先执行下面的指令得到程序的反汇编代码,然后我们进行愉快的拆解
$objdump -d bomb > bomb.asm
-
phase1
在bomb.asm中找到
phase_1()
的汇编代码段如下:这里关于寄存器的几点需要补充:
- %rdi: 保存了函数入口的第一个参数
- %rsi: 保存了函数入口的第二个参数
- %rdx: 保存了函数入口的第三个参数
- %rcx: 保存了函数入口的第四个参数
- %rax:函数的返回值
由此,要避免0x400ef2处触发explode_bomb,需要在上一行进行跳转,跳转条件**%eax值为0**(test是先进行与运算再设置PSW的,判断相等的条件为ZF==0),因此我们去strings_not_equal处的汇编代码查看
输入参数为%rdi和%rsi,返回值为%rax,当两个输入存储的值不相等时,返回%eax值1,可以确定,%si存储了待比较的字符串,也就是bomb1的key,因此我们在该函数处设置断点,并以字符串的形式打印%si中的值
$gdb bomb (gdb)break strings_not_equal (gdb)r (gdb) p (char*)$rsi $1 = 0x402400 "Border relations with Canada have never been better." (gdb) p (char*)$rdi $2 = 0x603780 <input_strings> "2333"
因此,bomb1的key为:Border relations with Canada have never been better.
bomb1拆除成功。
-
phase2
phase_2()
的汇编代码如下这里不难看到
phase_2()
其实先利用read_six_numbers
读入6个数,再逐个比较。数字比较部分的代码分析如下:注意:
- %rsp生长方向为地址减小的方向,因此,对于存储在%rsp中的
arr
首地址,lea 0x4(%rsp), %rbx
实际表示为%rbx = arr[i + 1]
0000000000400efc <phase_2>: 400efc: 55 push %rbp 400efd: 53 push %rbx 400efe: 48 83 ec 28 sub $0x28,%rsp //开辟栈空间 400f02: 48 89 e6 mov %rsp,%rsi //%rsp实际上保存了数组的首地址, 400f05: e8 52 05 00 00 callq 40145c <read_six_numbers> 400f0a: 83 3c 24 01 cmpl $0x1,(%rsp) //1. arr[0] = 1 400f0e: 74 20 je 400f30 <phase_2+0x34> 400f10: e8 25 05 00 00 callq 40143a <explode_bomb> 400f15: eb 19 jmp 400f30 <phase_2+0x34> 400f17: 8b 43 fc mov -0x4(%rbx),%eax //4. %eax = arr[?-1] 400f1a: 01 c0 add %eax,%eax //5. %eax *= 2 400f1c: 39 03 cmp %eax,(%rbx) //6. if %eax == arr[?] 400f1e: 74 05 je 400f25 <phase_2+0x29>// 400f20: e8 15 05 00 00 callq 40143a <explode_bomb> 400f25: 48 83 c3 04 add $0x4,%rbx //7. arr[?+1] 400f29: 48 39 eb cmp %rbp,%rbx //8. arr[?] != arr[6],loop to 4 400f2c: 75 e9 jne 400f17 <phase_2+0x1b> 400f2e: eb 0c jmp 400f3c <phase_2+0x40> 400f30: 48 8d 5c 24 04 lea 0x4(%rsp),%rbx //2. (%rbx) = arr[1] 400f35: 48 8d 6c 24 18 lea 0x18(%rsp),%rbp //3. (%rbp) = arr[6],0x18是十进制的24 400f3a: eb db jmp 400f17 <phase_2+0x1b> 400f3c: 48 83 c4 28 add $0x28,%rsp 400f40: 5b pop %rbx 400f41: 5d pop %rbp 400f42: c3 retq
根据对汇编代码的分析,可以得知代码的逻辑如下:
if (arr[0] != 1) explode_bomb(); for (int i = 1; i <= 6; ++i) { int tmp = arr[i - 1] * 2; if (tmp != arr[i]) explode_bomb(); }
因此,
phase_2()
的key为首项为1,公比为2的等比数列的前6项:1 2 4 8 16 32 - %rsp生长方向为地址减小的方向,因此,对于存储在%rsp中的
-
phase3
先让我们看一下源码
0000000000400f43 <phase_3>: 400f43: 48 83 ec 18 sub $0x18,%rsp 400f47: 48 8d 4c 24 0c lea 0xc(%rsp),%rcx 400f4c: 48 8d 54 24 08 lea 0x8(%rsp),%rdx 400f51: be cf 25 40 00 mov $0x4025cf,%esi 400f56: b8 00 00 00 00 mov $0x0,%eax 400f5b: e8 90 fc ff ff callq 400bf0 <__isoc99_sscanf@plt> //sscanf返回读取到的item个数 400f60: 83 f8 01 cmp $0x1,%eax 400f63: 7f 05 jg 400f6a <phase_3+0x27> 400f65: e8 d0 04 00 00 callq 40143a <explode_bomb> 400f6a: 83 7c 24 08 07 cmpl $0x7,0x8(%rsp) 400f6f: 77 3c ja 400fad <phase_3+0x6a> //num1>7,bomb() 400f71: 8b 44 24 08 mov 0x8(%rsp),%eax //eax = num1 400f75: ff 24 c5 70 24 40 00 jmpq *0x402470(,%rax,8) //(0x402470[8*num1])处的值 400f7c: b8 cf 00 00 00 mov $0xcf,%eax 400f81: eb 3b jmp 400fbe <phase_3+0x7b> 400f83: b8 c3 02 00 00 mov $0x2c3,%eax 400f88: eb 34 jmp 400fbe <phase_3+0x7b> 400f8a: b8 00 01 00 00 mov $0x100,%eax 400f8f: eb 2d jmp 400fbe <phase_3+0x7b> 400f91: b8 85 01 00 00 mov $0x185,%eax 400f96: eb 26 jmp 400fbe <phase_3+0x7b> 400f98: b8 ce 00 00 00 mov $0xce,%eax 400f9d: eb 1f jmp 400fbe <phase_3+0x7b> 400f9f: b8 aa 02 00 00 mov $0x2aa,%eax 400fa4: eb 18 jmp 400fbe <phase_3+0x7b> 400fa6: b8 47 01 00 00 mov $0x147,%eax 400fab: eb 11 jmp 400fbe <phase_3+0x7b> 400fad: e8 88 04 00 00 callq 40143a <explode_bomb> 400fb2: b8 00 00 00 00 mov $0x0,%eax 400fb7: eb 05 jmp 400fbe <phase_3+0x7b> 400fb9: b8 37 01 00 00 mov $0x137,%eax 400fbe: 3b 44 24 0c cmp 0xc(%rsp),%eax 400fc2: 74 05 je 400fc9 <phase_3+0x86> 400fc4: e8 71 04 00 00 callq 40143a <explode_bomb> 400fc9: 48 83 c4 18 add $0x18,%rsp 400fcd: c3 retq
源码中可以看到调用了
sscanf
库函数,该函数表示返回读入参数的个数,我们设置断点查看(gdb)break *0x400f60 --- phase_3(): INPUT:2 3 3 3 --- (gdb)info r eax eax 0x2 2
因此phase_3()只读取两个参数,查看0x8(%rsp)和0xc(%rsp)
Breakpoint 1, 0x0000000000400f60 in phase_3 () (gdb) x $sp 0x7fffffffdf00: 0x00402210 (gdb) x $rsp 0x7fffffffdf00: 0x00402210 (gdb) x $rsp+0x8 0x7fffffffdf08: 0x00000002 (gdb) x $rsp+0xc 0x7fffffffdf0c: 0x00000003
分别放在
0x8(%rsp)
和0xc(%sp)
(输入的参数入栈,最后一个在栈底0xc
,高地址;第一个在栈顶,低地址0x8
),我们假设两处输入的参数分别为num1
和num2
,且0<=num1
<=7(ja只判定无符号数),num1被存储在%eax中,根据400f75: ff 24 c5 70 24 40 00 jmpq *0x402470(,%rax,8) //(0x402470[8*num1])处的值
可知,根据输入不同的num1,需要跳转到不同的地址处,我们从0x402470开始连续打印8个地址(x64机器每个地址8个字节)
(gdb) x/8xg 0x402470 0x402470: 0x0000000000400f7c 0x0000000000400fb9 0x402480: 0x0000000000400f83 0x0000000000400f8a 0x402490: 0x0000000000400f91 0x0000000000400f98 0x4024a0: 0x0000000000400f9f 0x0000000000400fa6
所以根据num1=[0…7],分别前往源码中不同的地址处对%eax赋值操作,跳转处标记在源码中
400f7c: b8 cf 00 00 00 mov $0xcf,%eax //num1=0,eax=0xcf=207 400f81: eb 3b jmp 400fbe <phase_3+0x7b> 400f83: b8 c3 02 00 00 mov $0x2c3,%eax //num1=2,eax=0x2c3=707 400f88: eb 34 jmp 400fbe <phase_3+0x7b> 400f8a: b8 00 01 00 00 mov $0x100,%eax //num1=3,eax=0x100=256 400f8f: eb 2d jmp 400fbe <phase_3+0x7b> 400f91: b8 85 01 00 00 mov $0x185,%eax //num1=4,eax=0x185=389 400f96: eb 26 jmp 400fbe <phase_3+0x7b> 400f98: b8 ce 00 00 00 mov $0xce,%eax //num1=5,eax=0xce=206 400f9d: eb 1f jmp 400fbe <phase_3+0x7b> 400f9f: b8 aa 02 00 00 mov $0x2aa,%eax //num1=6,eax=0x2aa=682 400fa4: eb 18 jmp 400fbe <phase_3+0x7b> 400fa6: b8 47 01 00 00 mov $0x147,%eax //num1=7,eax=0x147=327 400fab: eb 11 jmp 400fbe <phase_3+0x7b> 400fad: e8 88 04 00 00 callq 40143a <explode_bomb> 400fb2: b8 00 00 00 00 mov $0x0,%eax 400fb7: eb 05 jmp 400fbe <phase_3+0x7b> 400fb9: b8 37 01 00 00 mov $0x137,%eax //num1=1,eax=0x137=311 400fbe: 3b 44 24 0c cmp 0xc(%rsp),%eax //num2 == eax? (defused()) : bomb 400fc2: 74 05 je 400fc9 <phase_3+0x86> 400fc4: e8 71 04 00 00 callq 40143a <explode_bomb>
因此,phase_3()的key:num1 num2,对应以下8组中任意一组即可:
num1 num2 0 207 1 311 2 707 3 256 4 389 5 206 6 682 7 327 -
phase4
000000000040100c <phase_4>: 40100c: 48 83 ec 18 sub $0x18,%rsp 401010: 48 8d 4c 24 0c lea 0xc(%rsp),%rcx %rcx=num2 401015: 48 8d 54 24 08 lea 0x8(%rsp),%rdx 40101a: be cf 25 40 00 mov $0x4025cf,%esi 40101f: b8 00 00 00 00 mov $0x0,%eax 401024: e8 c7 fb ff ff callq 400bf0 <__isoc99_sscanf@plt> 401029: 83 f8 02 cmp $0x2,%eax 40102c: 75 07 jne 401035 <phase_4+0x29> 40102e: 83 7c 24 08 0e cmpl $0xe,0x8(%rsp) 401033: 76 05 jbe 40103a <phase_4+0x2e> //num1 <= 0xe(14) 401035: e8 00 04 00 00 callq 40143a <explode_bomb> 40103a: ba 0e 00 00 00 mov $0xe,%edx //edx = 14 40103f: be 00 00 00 00 mov $0x0,%esi //esi = 0 401044: 8b 7c 24 08 mov 0x8(%rsp),%edi //edi = num1 401048: e8 81 ff ff ff callq 400fce <func4> 40104d: 85 c0 test %eax,%eax 40104f: 75 07 jne 401058 <phase_4+0x4c> 401051: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp) 401056: 74 05 je 40105d <phase_4+0x51> 401058: e8 dd 03 00 00 callq 40143a <explode_bomb> 40105d: 48 83 c4 18 add $0x18,%rsp 401061: c3 retq
依然是读入两个参数num1(0x8(%rsp))和num2(0xc(%rsp)),且由跳转函数可以得到0<=
num1
<=14,经过了三个寄存器的赋值以后,函数跳转到fun4
,不过在这之前我们可以看到,在后续的汇编代码中,需要满足%eax = 0
和num2=0
两个条件。以下是func4的汇编代码:0000000000400fce <func4>://已知的参数:%edx=14,%esi=0,%edi=num1 400fce: 48 83 ec 08 sub $0x8,%rsp 400fd2: 89 d0 mov %edx,%eax //%eax=14 400fd4: 29 f0 sub %esi,%eax //%eax -= (%esi) 400fd6: 89 c1 mov %eax,%ecx //%ecx=%eax 400fd8: c1 e9 1f shr $0x1f,%ecx //取%ecx的符号位 400fdb: 01 c8 add %ecx,%eax //%eax += %ecx 400fdd: d1 f8 sar %eax 400fdf: 8d 0c 30 lea (%rax,%rsi,1),%ecx 400fe2: 39 f9 cmp %edi,%ecx //num1 >= %ecx 400fe4: 7e 0c jle 400ff2 <func4+0x24> 400fe6: 8d 51 ff lea -0x1(%rcx),%edx %edx=%rcx-1 400fe9: e8 e0 ff ff ff callq 400fce <func4> 400fee: 01 c0 add %eax,%eax %eax*=2 400ff0: eb 15 jmp 401007 <func4+0x39>//done 400ff2: b8 00 00 00 00 mov $0x0,%eax //%eax=0 400ff7: 39 f9 cmp %edi,%ecx //num1<=%ecx,done 400ff9: 7d 0c jge 401007 <func4+0x39> 400ffb: 8d 71 01 lea 0x1(%rcx),%esi //%esi=%rcx+1 400ffe: e8 cb ff ff ff callq 400fce <func4> 401003: 8d 44 00 01 lea 0x1(%rax,%rax,1),%eax 401007: 48 83 c4 08 add $0x8,%rsp 40100b: c3 retq
注:类似于 cmp %edi,%ecx jle 400ff2 <func4+0x24>;跳转语句的主语是dst,如左边这句表示,compare %edi : %ecx,若 %ecx <=(lower or equal) %edi,则jump到0x400ff2处
分析两次跳转条件,可以得到
%ecx=num1
,即可返回%eax=0
,汇编代码里面用了比较多的递归,为了方便计算我们画出算法流程图后写个测试函数看看num1应该是多少:#include <stdio.h> int fun4(int dx, int si, int di) { int ax = dx - si; int cx = (unsigned)ax >> 31; ax = (ax + cx) >> 1; cx = ax + si; if (di >= cx) { ax = 0; if (di <= cx) { return ax; } else { si = cx + 1; ax = fun4(dx, si, di); return 2*ax + 1; } } else { dx = cx - 1; ax = fun4(dx, si, di); return 2 * ax; } } int main() { for (int num1 = 0; num1 <= 14; ++num1) if (fun4(14, 0, num1) == 0) printf("%d\n", num1); return 0; } ----运行结果---- 0 1 3 7
所以**phase_4()**的key为如下4组中的任意一组即可:
0 0
1 0
3 0
7 0
-
phase5
反汇编代码如下:
0000000000401062 <phase_5>: 401062: 53 push %rbx 401063: 48 83 ec 20 sub $0x20,%rsp 401067: 48 89 fb mov %rdi,%rbx 40106a: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax 401071: 00 00 401073: 48 89 44 24 18 mov %rax,0x18(%rsp) 401078: 31 c0 xor %eax,%eax 40107a: e8 9c 02 00 00 callq 40131b <string_length> 40107f: 83 f8 06 cmp $0x6,%eax 401082: 74 4e je 4010d2 <phase_5+0x70> 401084: e8 b1 03 00 00 callq 40143a <explode_bomb> 401089: eb 47 jmp 4010d2 <phase_5+0x70> 40108b: 0f b6 0c 03 movzbl (%rbx,%rax,1),%ecx 40108f: 88 0c 24 mov %cl,(%rsp) 401092: 48 8b 14 24 mov (%rsp),%rdx 401096: 83 e2 0f and $0xf,%edx 401099: 0f b6 92 b0 24 40 00 movzbl 0x4024b0(%rdx),%edx 4010a0: 88 54 04 10 mov %dl,0x10(%rsp,%rax,1) 4010a4: 48 83 c0 01 add $0x1,%rax 4010a8: 48 83 f8 06 cmp $0x6,%rax 4010ac: 75 dd jne 40108b <phase_5+0x29> 4010ae: c6 44 24 16 00 movb $0x0,0x16(%rsp) 4010b3: be 5e 24 40 00 mov $0x40245e,%esi 4010b8: 48 8d 7c 24 10 lea 0x10(%rsp),%rdi 4010bd: e8 76 02 00 00 callq 401338 <strings_not_equal> 4010c2: 85 c0 test %eax,%eax 4010c4: 74 13 je 4010d9 <phase_5+0x77> 4010c6: e8 6f 03 00 00 callq 40143a <explode_bomb> 4010cb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) 4010d0: eb 07 jmp 4010d9 <phase_5+0x77> 4010d2: b8 00 00 00 00 mov $0x0,%eax 4010d7: eb b2 jmp 40108b <phase_5+0x29> 4010d9: 48 8b 44 24 18 mov 0x18(%rsp),%rax 4010de: 64 48 33 04 25 28 00 xor %fs:0x28,%rax 4010e5: 00 00 4010e7: 74 05 je 4010ee <phase_5+0x8c> 4010e9: e8 42 fa ff ff callq 400b30 <__stack_chk_fail@plt> 4010ee: 48 83 c4 20 add $0x20,%rsp 4010f2: 5b pop %rbx 4010f3: c3 retq
从0x40107f处可以看到,phase5需要我们输入长度为
6
的字符串,我们先输入长度为6的字符串,并在0x40108b处设置断点,可以看到(gdb) p (char*)$rbx $2 = 0x6038c0 <input_strings+320> "abcdef"
%rbx存储了我们输入字符串的首地址,可以看到0x4010ac处之前是在sp中存储这6位字符,然后直到0x4010bd处比较字符串。这样我们其实可以直接查询%rsi存储的地址处的字符串
(gdb) p (char*)$esi $5 = 0x40245e "flyers"
这就结束了?**不!**这不只是简单比较一下字符串就行,此前对输入的字符串进行了转换映射。我们将如下的汇编代码用高级语言改写:
40108b: 0f b6 0c 03 movzbl (%rbx,%rax,1),%ecx 40108f: 88 0c 24 mov %cl,(%rsp) 401092: 48 8b 14 24 mov (%rsp),%rdx 401096: 83 e2 0f and $0xf,%edx 401099: 0f b6 92 b0 24 40 00 movzbl 0x4024b0(%rdx),%edx 4010a0: 88 54 04 10 mov %dl,0x10(%rsp,%rax,1) 4010a4: 48 83 c0 01 add $0x1,%rax 4010a8: 48 83 f8 06 cmp $0x6,%rax 4010ac: 75 dd jne 40108b <phase_5+0x29> ------ %rbx:我们输入的字符,设定为 inputs[i],经过与0x4024b0的字符运算后存储在0x10(%rsp)处 0x4024b0:事先存储的字符,设定为arr[i] int sp[6]; for (int i = 0; i < 6; ++i) sp[i] = arr[inputs[i] & 0xf]; ------
对于任意一个数num,有
num&0xf<=0xf
,因此我们可以查看0x4024b0处开始的16个字符可以得到
int arr[16] = {'m', 'a', 'd', 'u', 'i', 'e', 'r', 's', 'n', 'f', 'o',' t', 'v', 'b', 'y', 'l'};
最终0x10(%rsp)处的字符(也即sp[])被映射到%rdi处,%rsi处的字符为
所以只需要找到合适的
inputs
,并作映射sp[i]=arr[inputs[i]&0xf]
,使得string(sp)=="flyers"
,写个测试函数找一找:string arr = "maduiersnfotvbyl"; string si = "flyers"; for (int i = 0; i < 6; ++i) { cout << si[i] << ": "; for (int k = 0; k < 128; k++) if (arr[int(k & 0xf)] == si[i]) cout << (char)k; cout << endl; } ---- f: )9IYiy l: /?O_o y: .>N^n~ e: %5EUeu r: &6FVfv s: '7GWgw
以上6行字符的任意排列组合均可拆除phase5()
其实这里有个彩蛋,
Ctrl+C
可以直接拆弹,这是我没想到的2333 -
phase6
激动人心的时刻,终于来到最后一个phase了,让我们继续看一下源码
00000000004010f4 <phase_6>: 4010f4: 41 56 push %r14 4010f6: 41 55 push %r13 4010f8: 41 54 push %r12 4010fa: 55 push %rbp 4010fb: 53 push %rbx 4010fc: 48 83 ec 50 sub $0x50,%rsp 401100: 49 89 e5 mov %rsp,%r13 401103: 48 89 e6 mov %rsp,%rsi 401106: e8 51 03 00 00 callq 40145c <read_six_numbers> 40110b: 49 89 e6 mov %rsp,%r14 40110e: 41 bc 00 00 00 00 mov $0x0,%r12d 401114: 4c 89 ed mov %r13,%rbp 401117: 41 8b 45 00 mov 0x0(%r13),%eax 40111b: 83 e8 01 sub $0x1,%eax 40111e: 83 f8 05 cmp $0x5,%eax 401121: 76 05 jbe 401128 <phase_6+0x34> 401123: e8 12 03 00 00 callq 40143a <explode_bomb> 401128: 41 83 c4 01 add $0x1,%r12d 40112c: 41 83 fc 06 cmp $0x6,%r12d 401130: 74 21 je 401153 <phase_6+0x5f> 401132: 44 89 e3 mov %r12d,%ebx 401135: 48 63 c3 movslq %ebx,%rax 401138: 8b 04 84 mov (%rsp,%rax,4),%eax 40113b: 39 45 00 cmp %eax,0x0(%rbp) 40113e: 75 05 jne 401145 <phase_6+0x51> 401140: e8 f5 02 00 00 callq 40143a <explode_bomb> 401145: 83 c3 01 add $0x1,%ebx 401148: 83 fb 05 cmp $0x5,%ebx 40114b: 7e e8 jle 401135 <phase_6+0x41> 40114d: 49 83 c5 04 add $0x4,%r13 401151: eb c1 jmp 401114 <phase_6+0x20> 401153: 48 8d 74 24 18 lea 0x18(%rsp),%rsi 401158: 4c 89 f0 mov %r14,%rax 40115b: b9 07 00 00 00 mov $0x7,%ecx 401160: 89 ca mov %ecx,%edx 401162: 2b 10 sub (%rax),%edx 401164: 89 10 mov %edx,(%rax) 401166: 48 83 c0 04 add $0x4,%rax 40116a: 48 39 f0 cmp %rsi,%rax 40116d: 75 f1 jne 401160 <phase_6+0x6c> 40116f: be 00 00 00 00 mov $0x0,%esi 401174: eb 21 jmp 401197 <phase_6+0xa3> 401176: 48 8b 52 08 mov 0x8(%rdx),%rdx 40117a: 83 c0 01 add $0x1,%eax 40117d: 39 c8 cmp %ecx,%eax 40117f: 75 f5 jne 401176 <phase_6+0x82> 401181: eb 05 jmp 401188 <phase_6+0x94> 401183: ba d0 32 60 00 mov $0x6032d0,%edx 401188: 48 89 54 74 20 mov %rdx,0x20(%rsp,%rsi,2) 40118d: 48 83 c6 04 add $0x4,%rsi 401191: 48 83 fe 18 cmp $0x18,%rsi 401195: 74 14 je 4011ab <phase_6+0xb7> 401197: 8b 0c 34 mov (%rsp,%rsi,1),%ecx 40119a: 83 f9 01 cmp $0x1,%ecx 40119d: 7e e4 jle 401183 <phase_6+0x8f> 40119f: b8 01 00 00 00 mov $0x1,%eax 4011a4: ba d0 32 60 00 mov $0x6032d0,%edx 4011a9: eb cb jmp 401176 <phase_6+0x82> 4011ab: 48 8b 5c 24 20 mov 0x20(%rsp),%rbx 4011b0: 48 8d 44 24 28 lea 0x28(%rsp),%rax 4011b5: 48 8d 74 24 50 lea 0x50(%rsp),%rsi 4011ba: 48 89 d9 mov %rbx,%rcx 4011bd: 48 8b 10 mov (%rax),%rdx 4011c0: 48 89 51 08 mov %rdx,0x8(%rcx) 4011c4: 48 83 c0 08 add $0x8,%rax 4011c8: 48 39 f0 cmp %rsi,%rax 4011cb: 74 05 je 4011d2 <phase_6+0xde> 4011cd: 48 89 d1 mov %rdx,%rcx 4011d0: eb eb jmp 4011bd <phase_6+0xc9> 4011d2: 48 c7 42 08 00 00 00 movq $0x0,0x8(%rdx) 4011d9: 00 4011da: bd 05 00 00 00 mov $0x5,%ebp 4011df: 48 8b 43 08 mov 0x8(%rbx),%rax 4011e3: 8b 00 mov (%rax),%eax 4011e5: 39 03 cmp %eax,(%rbx) 4011e7: 7d 05 jge 4011ee <phase_6+0xfa> 4011e9: e8 4c 02 00 00 callq 40143a <explode_bomb> 4011ee: 48 8b 5b 08 mov 0x8(%rbx),%rbx 4011f2: 83 ed 01 sub $0x1,%ebp 4011f5: 75 e8 jne 4011df <phase_6+0xeb> 4011f7: 48 83 c4 50 add $0x50,%rsp 4011fb: 5b pop %rbx 4011fc: 5d pop %rbp 4011fd: 41 5c pop %r12 4011ff: 41 5d pop %r13 401201: 41 5e pop %r14 401203: c3 retq
比以往的长了很多,不过从输入处我们还是可以看到,此phase依然是读入6个数,我们逐段分析一下
40110b: 49 89 e6 mov %rsp,%r14 40110e: 41 bc 00 00 00 00 mov $0x0,%r12d 401114: 4c 89 ed mov %r13,%rbp 401117: 41 8b 45 00 mov 0x0(%r13),%eax 40111b: 83 e8 01 sub $0x1,%eax 40111e: 83 f8 05 cmp $0x5,%eax 401121: 76 05 jbe 401128 <phase_6+0x34>
可以得到以下信息
-
输入的6个数字保存在%rsp、%rbp、%r13、%r14中,且存储的均为数组的首地址,我们假设该数组为arr[]
-
arr[0]-1<=5
继续往下看到0x401153
401114: 4c 89 ed mov %r13,%rbp 401117: 41 8b 45 00 mov 0x0(%r13),%eax 40111b: 83 e8 01 sub $0x1,%eax 40111e: 83 f8 05 cmp $0x5,%eax 401121: 76 05 jbe 401128 <phase_6+0x34> 401123: e8 12 03 00 00 callq 40143a <explode_bomb> 401128: 41 83 c4 01 add $0x1,%r12d 40112c: 41 83 fc 06 cmp $0x6,%r12d 401130: 74 21 je 401153 <phase_6+0x5f> 401132: 44 89 e3 mov %r12d,%ebx 401135: 48 63 c3 movslq %ebx,%rax 401138: 8b 04 84 mov (%rsp,%rax,4),%eax 40113b: 39 45 00 cmp %eax,0x0(%rbp) 40113e: 75 05 jne 401145 <phase_6+0x51> 401140: e8 f5 02 00 00 callq 40143a <explode_bomb> 401145: 83 c3 01 add $0x1,%ebx 401148: 83 fb 05 cmp $0x5,%ebx 40114b: 7e e8 jle 401135 <phase_6+0x41> 40114d: 49 83 c5 04 add $0x4,%r13 401151: eb c1 jmp 401114 <phase_6+0x20> 401153: 48 8d 74 24 18 lea 0x18(%rsp),%rsi ------ 大意如下: for (int i = 0; i < 6; ++i) { if (arr[i] > 6) bomb(); for (int j = i + 1; j < 6; ++j) if (arr[j] == arr[i]) bomb(); } ------
(这一段挺麻烦的orz…整个phase6我看了整整一天),总之上一段程序可以得到如下结论
- 输入的6个数字互不相等且不超过6
继续往下分析:
401153: 48 8d 74 24 18 lea 0x18(%rsp),%rsi //si=arr.end() 401158: 4c 89 f0 mov %r14,%rax 40115b: b9 07 00 00 00 mov $0x7,%ecx 401160: 89 ca mov %ecx,%edx 401162: 2b 10 sub (%rax),%edx 401164: 89 10 mov %edx,(%rax) //arr[i] = 7 - arr[i] 401166: 48 83 c0 04 add $0x4,%rax 40116a: 48 39 f0 cmp %rsi,%rax 40116d: 75 f1 jne 401160 <phase_6+0x6c> ------ for (int i = 0; i < 6; ++i) arr[i] = 7 - arr[i]; ------
继续往下看
40116f: be 00 00 00 00 mov $0x0,%esi 401174: eb 21 jmp 401197 <phase_6+0xa3> 401176: 48 8b 52 08 mov 0x8(%rdx),%rdx 40117a: 83 c0 01 add $0x1,%eax 40117d: 39 c8 cmp %ecx,%eax 40117f: 75 f5 jne 401176 <phase_6+0x82> 401181: eb 05 jmp 401188 <phase_6+0x94> 401183: ba d0 32 60 00 mov $0x6032d0,%edx 401188: 48 89 54 74 20 mov %rdx,0x20(%rsp,%rsi,2) 40118d: 48 83 c6 04 add $0x4,%rsi 401191: 48 83 fe 18 cmp $0x18,%rsi 401195: 74 14 je 4011ab <phase_6+0xb7> 401197: 8b 0c 34 mov (%rsp,%rsi,1),%ecx 40119a: 83 f9 01 cmp $0x1,%ecx 40119d: 7e e4 jle 401183 <phase_6+0x8f> 40119f: b8 01 00 00 00 mov $0x1,%eax 4011a4: ba d0 32 60 00 mov $0x6032d0,%edx 4011a9: eb cb jmp 401176 <phase_6+0x82> 4011ab: 48 8b 5c 24 20 mov 0x20(%rsp),%rbx ------ 新建数组,narr,首地址为0x20(%rsp) for (int i = 0; i < 6; ++i) { int count = arr[i]; int address = 0x6032d0; for (int j = 1; j < count; ++j) address = *(address) + 0x8; *(%rsp + 2*%rsi + 0x20) = address; } ------
从而新数组
narr
的首地址为%rsp+0x20,结束地址(narr.end())为%rsp+0x50(一个数据为一个地址,占据8个字节),输出一下0x6032d0处存储的地址值
继续往下分析汇编代码(终于快结束了orz…)
4011ab: 48 8b 5c 24 20 mov 0x20(%rsp),%rbx
4011b0: 48 8d 44 24 28 lea 0x28(%rsp),%rax
4011b5: 48 8d 74 24 50 lea 0x50(%rsp),%rsi
4011ba: 48 89 d9 mov %rbx,%rcx
4011bd: 48 8b 10 mov (%rax),%rdx
4011c0: 48 89 51 08 mov %rdx,0x8(%rcx)
4011c4: 48 83 c0 08 add $0x8,%rax
4011c8: 48 39 f0 cmp %rsi,%rax
4011cb: 74 05 je 4011d2 <phase_6+0xde>
4011cd: 48 89 d1 mov %rdx,%rcx
4011d0: eb eb jmp 4011bd <phase_6+0xc9>
4011d2: 48 c7 42 08 00 00 00 movq $0x0,0x8(%rdx)
------
for (int i = 1; i < 6; ++i) {
*(narr[i - 1] + 0x8) = narr[i];
}
------
最后的代码:
4011d2: 48 c7 42 08 00 00 00 movq $0x0,0x8(%rdx)
4011d9: 00
4011da: bd 05 00 00 00 mov $0x5,%ebp
4011df: 48 8b 43 08 mov 0x8(%rbx),%rax
4011e3: 8b 00 mov (%rax),%eax
4011e5: 39 03 cmp %eax,(%rbx)
4011e7: 7d 05 jge 4011ee <phase_6+0xfa>
4011e9: e8 4c 02 00 00 callq 40143a <explode_bomb>
4011ee: 48 8b 5b 08 mov 0x8(%rbx),%rbx
4011f2: 83 ed 01 sub $0x1,%ebp
4011f5: 75 e8 jne 4011df <phase_6+0xeb>
------
for (int i = 1; i < 6; ++i) {
if (*narr[i - 1] < *narr[i])
bomb();
}
------
继续回顾一下0x6032d0处的取值
总结前面的汇编代码我们可以得出:
- narr[1…6]存储{0x6032d0, 0x6032e0, 0x6032f0, 0x0x603300, 0x603310, 0x603320}这几个地址
- 这几个地址处存储的整数值,满足逆序排序的关系,即*(narr[i - 1]) >= *(narr[i])
- narr[i]由7-arr[i]映射而来
满足*(narr[i - 1] >= *(narr[i]))的数组顺序为
3 4 5 6 1 2
0x6032f0 0x603300 0x603310 0x603320 0x6032d0 0x6032e0
924 691 477 443 332 168
由于第一行的对应下标为7-arr[i]得来的(为什么不是0开头呢?因为变换前后都要满足0<=arr[i]<=6,所以准确来说arr[i]>=1),因此arr[i],也就是phase6的key为
4 3 2 1 6 5
至此,bomblab就全部完成了。当然还有一个彩蛋关,如果各位时间充裕的话可以尝试一下,这里就挖个坑(可能不会填)。这个lab确实花费了我蛮长的准备时间,以及中间做的时候翻了好多别人的博客(有能力的话建议独立解决),从gdb调试器的用法到简单汇编代码的拆分和阅读,确实是一个不错的练习机会。
参考
https://zhuanlan.zhihu.com/p/57977157
https://zhuanlan.zhihu.com/p/104130161
https://github.com/luy-0/CS-APP-LABs/blob/master/Lab-Answer_HB/Lab2-BombLab/L2-Bomb-Note.md